查看原文
其他

举例说明我们未来的生活将因ChatGPT发生哪些改变,附学习资料

PM田宇洲 产品设计言之有物 2023-09-14

2023年第一季度,AI成为了舞台上聚光灯下的主角。一系列新名词如 ChatGPT、Notion AI、New Bing、GPT-4、MidJourney v5、office copilot、Adobe Firefly、Chat GPT插件等接踵而至,一场场发布会效果展示让人们对人工智能的能力有了一次次全新的理解,似乎一夜间人工智障真的变成了人工智能。作者认为这场 AI 浪潮将彻底颠覆所有人的工作和生活,尤其是办公室白领们,如医生、心理咨询师、数据分析师、律师、前端程序员、设计师等,都将受到不同程度的影响。蓝领工人的达摩克利斯之剑大概率是Boston Dynamics 或 Tesla Bot ,已经在路上…

如果你还不清楚发生了什么,强烈建议你静下心来,看看这三场发布会,抛开偏见,想想自己的或亲朋好友的工作和生活将会受到哪些影响,哪些工作真的不可替代。

ChatGPT-4发布会:https://b23.tv/lFK4Cn0

Office 365 Copilot发布会:https://b23.tv/TPPweNr

Adobe Firefly发布会:https://b23.tv/AvFUGbp


2月中旬时,作者基于当时 ChatGPT 的能力,写了一篇文章预测 AI 会给企业协同办公场景带来哪些改变(感兴趣的朋友可以看一下,未来已来,ChatGPT可能从这12个方面彻底改变我们的工作和生活 )。3 月中旬,微软office365 copilot发布会的内容印证了作者的部分预测。过去一个月,作者与身边的互联网从业者们做了多次交流,也阅读了大量文章,同时亲身体验了Notion AI,New Bing、GPT-4、MidJourney、stable diffusion、D-ID等AI产品,对这一轮AI可能带来的改变有了一些全新的认知。本文将和大家分享和交流。本文分2部分展开论述,分别是:

上篇-基于 AI 的人机交互方式改变将彻底改变我们的生活

人人都有“贾维斯”的时代即将来临,这将带来大量新的变革和平台利益分配重构。作者将尝试基于当前office365和ChatGPT Plugins服务能力,结合案例,预测未来我们的我们的生活场景会出现怎样的改变。同时做一些简单的预测,分析当前大公司(以流量-广告变现的大公司)可能面临哪些挑战。

下篇-企业的智能数字化升级来了,重复性工作消失,协作效率极大提升

企业效率升级将迎来大变革,真数字化转型要来了。从过去单点功能智能到全链路智能化升级;重复性工作逐步消失;创意类工作机器辅助完成更高效;企业人才管理模式颠覆性改变,HR系统可能应该大变身,企业运作人效极大提升;企业协作卡点诊断,预判资源浪费环节;逐步实现企业的数字孪生,基于此驱动企业决策和战略制定。


文章末尾将分享作者的一些学习/阅读资料,不定时更新,分享资料将包括但不限于:

1、midjourney AI作图相关教程,关键词,示例,题词工具等

2、stable diffusion AI作图教程及使用示例

3、如何的使用ChatGPT获取理想答案,推荐好用插件,好用工具等

4、企业数字化转型相关课程,文章等

5、600多款AI服务/产品列表和说明,持续更新中

6、其他


当作者看完微软发布会后,作者便坚信未来ChatGPT或者说大语言模型将成为所有应用服务的基础,人机交互方式的改变从更深层级改变我们的生活,智能助理服务解决我们一切问题,大多数app都提供底层服务能力,人机交互的改变或将带来新一轮的服务升级,除了娱乐、社交之外,一切皆通过自然语言与智能设备沟通,进一步降低使用信息化服务的门槛。

上篇内容包括 AI参与后的人机交互方式改变的思考,互联网大厂的服务模式改变的思考,人类数字孪生的思考等。大语言模型发展很快,国内的百度,360,腾讯都以放出新信息。为了方便理解,下文中以ChatGPT代替大语言模型,你也可以把它想成是未来足够好用的文心一言、360GPT等服务。

一、 AI助理服务将从根本上改变人机交互

ChatGPT出现前,所有公司的语音助手(Siri,小度,小爱等)都是针对特定场景的服务/应用唤醒,解决非常非常有限的问题,但ChatGPT带来的是一种通用的人机互动方案,可以处理各种场景的问题,这是继人机交互页面面世以来,又一次巨大变革,不亚于马车时代汽车被发明。

大语言模型与应用融合的方案初次亮相是现在微软Office 365的copilot发布会中,这让我们看到智能助理融入具体场景会发生什么奇妙的变化,紧接着发布的ChatGPT plugins更是将ChatGPT作为入口,这种野心就非常可怕了,它想做未来用户服务的第一入口,变成超级超级应用,未来除了娱乐/社交外(忽然发现腾讯的基本盘-游戏和社交-稳稳的,同时他还在做GPT),会不会人们与网络信息互动的方式将会从之前分化的一个个app,又变成了人机互动对话呢。

真是分久必合,合久必分的趋势,从门户(分)->搜索引擎(合)->垂直服务(分)->人机对话(合)。但作者认为ChatGPT并不适合做这个超级入口,下文会有具体描述。


从满足用户需求来看,有了人工智能加入后的产品解决方案似乎更趋近最优解,举例来说,面对一个日常复杂任务时,我们当前的操作路径是在各种超级应用切换,然后点点点,滑滑滑,有智能助理辅助完成目标任务的交互可能好到超出想象(下文案例分析中的内容不是臆想,是以ChatGPT-4发布会上表现出来的能力作为基础,但也需要当前APP服务进行相应改造),相信很快就能看到落地服务。

1.1 案例1-关于减肥计划

背景:快到夏天了,为了穿衣服好看想要减肥

当前不会用ChatGPT得提问方式:你对ChatGPT说:“我想要减肥,给我一个减肥计划”,这是当前ChatGPT给出的答案,我们会发现,ChatGPT-3.5给出的都是片面的介绍,没有什么是可操作性,ChatGPT-4给的计划已经看起来挺靠谱的,但是具体实操还会有难度,因为没有落到具体每天上和动作上。


会用ChatGPT-4提问方式:对ChatGPT提问的模板:角色设定+背景信息+目标任务+期望结果。按照这个模板,我们可以这么对ChatGPT说:(设定角色)你现在是一个健身教练和营养调理专家,(背景信息)我现在的体重是150斤身高是179厘米,(目标任务)请根据我的身高体重对我进行身体分析,同时给出了一个表示每月减重5斤的减肥方案,同时给出我每周详细的训练和饮食计划,(期望结果)我个人比较偏向跳绳减肥,希望每天的饮食食谱都有所不同,计划精确到一周每天不同时段做什么,然后通过表格的形式展示给我。来看效果:


未来效果:我只需要跟我的智能助理说:我想要减肥,帮我出一个完整的减肥计划。然后智能助理可以自己为这个目标设置更专业的角色,同时调取我的体重秤数据,健康数据,体检报告等,为我制定一个科学的每日减肥方案,包括健身计划,饮食计划,并将健身计划添加到我的日程中,设置提醒,或者提前预约我的健身房时间,同时给出对应动作的指导视频,它将成为我的私人教练,我只需要对着手机做动作,它会校准动作说明并给出安全提示。饮食计划的食材已经添加到购物车中,可以一键下单即可周围超市配送到家,同时还可以附赠对应食材的烹饪方法视频。

下文会讨论如果要实现这套服务,可能的数据存储和调取逻辑,人机交互设计。


1.2 案例2-关于旅行攻略

背景:正值春天,我希望周末带一家人去赏花,需要提前准备一份赏花攻略,确保一家人都满意。

当前:先查看周末的天气确定温度天气,空气质量等;如果天气适合,紧接着会去小红书和马蜂窝选择适合的赏花地点,准备开始做攻略,攻略需要考虑到赏花地离家的距离,赏花路线是否适合带娃前往,是否可以带宠物,赏花地周末人流情况;出行方面,需要结合道路拥堵情况,考虑出发时间,出发路线,安排返程时间和计划等;吃饭方面,一家人吃饭如何选择,需要打开美团或大众点评,选择目的地,然后找目的地附近的餐厅,考虑家人的口味,选择餐厅并预约。这么看来,需要打开多个APP,还需要提前关注一些道路信息,降价信息,天气变化信息等,然后整理一份自以为很完善的文档文档。

AI助理+:只需要跟我的智能助理说:“周末想要一家人去赏花,帮我做一份完整的攻略,你可以跟我确认一些信息。”紧接着助理会根据目标任务,判断需要唤醒哪些服务,并根据我的历史数据,开始工作。

首先它会快速调取天气信息,直接分析周末是否适合出行,并给我反馈,如果适合,他会根据历史信息,让我确认是否是自驾游出行,是否是带上老婆孩子父母一起出游,得到确定答复后,它会告诉我它会去相关服务中为我查询整理信息,我可以先忙其他事情,他搞定后会将攻略微信发给我。

然后它就会按照我去筛选路线,赏花地,餐厅的思路,调取相关应用,通过用户评论识别和攻略内容识别,为我定制化生成3套方案,方案中会比我做的更好,比如她可以根据历史数据,给出周末出行当天的道路拥堵情况预测,给出更好的规划,同时它会结合多篇攻略内容整合比对,给出一份完整的攻略计划,比如会根据前一周抖音上的分享视频,给出目标景点的人流预测,结合过往家人外出聚餐数据,给出餐厅选择甚至点餐建议。给出3套攻略后,我如果不满意还可以继续生成,或整合几套方案,如果对某一套方案满意可以直接将出行计划图发送到家庭群里面,方便大家熟悉行程和计划,整体上我的投入时间可能也就需要说两句话,背后的服务调用查询信息,评估信息,组合信息都由智能助理完成。


1.3 案例3-关于出差汇报

背景:公司临时通知明天早需要出差去上海分公司给客户做一次面对面项目进度汇报,刚刚接到通知,你需要尽快准备材料和安排行程。

当前:因行程紧急,所以需要快速整理项目进度,产出结果,需要跟项目相关同事沟通,获取大量信息,并整理ppt,团队其他成员可能需要放下手头工作,进行全力配合,八成大家还需要加班,而且你在飞机或高铁上也要一直工作汇总准备,同时,你还需要赶快选择航班,订酒店,具体三餐如何解决,还需要查看上海的天气,准备衣物,整理行李箱,如果晚上有时间还可以计划一下夜晚游外滩的计划,定返程机票等等,你会在几个app中来回切换。

AI助理+:你先跟他说一句,帮我整理一份项目xxxxx的进度资料,整理好的资料扔到项目群里@项目经理和产研leader帮忙确认一下,看看是否有需要补充的,让运营leader核对一下具体数据,下午3点之前给出确认就好。然后智能助理会快速快速整理项目进度和相关数据,然后在群里@对应的同事,并且设置一个群提醒。你只需要最终整理一下即可,根据Copilot发布会的内容,它甚至会帮你添加每一页PPT应该怎么讲。

紧接着,对智能助理说,帮我安排一下出差行程,明早8点我需要到上海分公司参加一次汇报会,帮我做一个计划,并添加到我的日程。然后智能助理会查询目标地的天气信息,给出穿衣建议,同时会查询合适的航班,并在确认后完成预定,同时在滴滴完成去机场和机场到酒店的接送机服务,根据分公司地址信息,订酒店,然后并给出附近三餐特色美食推荐,同时给我一份从酒店到附近景点的出游计划,同时给出游玩和小吃建议等。这个过程将极其丝滑。


从上面三个案例中,你会发现2点变化,首先,如果不希望长篇大论的输入,那么我与智能助理互动时,需要带上大量我个人的背景信息作为潜在输入的prompt,这些信息就是我们在数字化自己的行为,是一种人的数字孪生;其次,如果机器做了大量信息整理类工作,人似乎可以更专注于丰富自己的体验和享受生活,机器会帮你完成很多繁琐耗时的事情。

数字孪生(Digital twin),或译作数字映射数字分身数位雙生,指在信息化平台内模拟物理实体、流程或者系统,類似實體系統在信息化平台中的雙胞胎。借助于数字映射,可以在信息化平台上了解物理实体的状态,甚至可以对物理实体里面预定义的接口元件进行控制。

数字映射是物联网里面的概念,它指通过集成物理反馈数据,并辅以人工智能、机器学习和软件分析,在信息化平台内建立一个数字化模拟。这个模拟会根据反馈,随着物理实体的变化而自动做出相应的变化。理想状态下,数字映射可以根据多重的反馈源数据进行自我学习,从而几乎实时地在数字世界里呈现物理实体的真实状况。我们在流浪气球中看到的数据卡,就是一种对人类的数字孪生。


二、 人机交互方式的改变可能带来哪些挑战和机会

作者在写这部分的时候,脑子里面一直出现的都是钢铁侠托尼和智能助理贾维斯的交互场景,你会发现当面对目标任务时,托尼和贾维斯的互动很简短,因为有大量的信息输入是贾维斯根据钢铁侠的过往行为数据自动补全的,它知道托尼的喜好,作息习惯,身体状况,危机时如何选择等等。不知道大家是否还记得,在外骨骼转身这个事情上,钢铁侠竞争对手公司的外骨骼会以腰部为轴直接转180度,导致驾驶者直接挂了,这就是机器需要理解大量的物理世界人的行为习惯。。。如果想要使用真的好用的人工智能实现人机互动。那么就需要在简短输入后,智能助理自动补全大量的假设和用户习惯信息,而这些信息来源于日积月累的行为记录。

回想一下,手机(未来可能是眼镜,植入芯片等)从最初就让我们不断的录入我们的信息,功能机时代,存储手机号码,短信等,移动互联网来了以后,我们的支付,生活娱乐/工作/生活数据大量沉淀在各种app上,我们真的在自然而然的进行着自己数字化备份云端的工作。


人机交互的模式改变,带来数据的存储和调取方式改变,我们先来看看Office365+ChatGPT方案和ChatGPT Plugins方案,然后我们再来聊聊作者认为未来可能的方案,先说结论,我认为这一轮终端厂商(苹果,华为,小米,vivo,oppo)做第一入口的机会更大。

2.1 Office365+ChatGPT方案

微软的发布会上,介绍了一种超级应用+大语言模型互动的解决方案,当时看到这套方案后,作者曾认为未来所有的应用都会需要这样一个copilot,都需要做自己内容的graph,有需求直接跟应用中的助理说,即可根据图谱和大语言模型返回满足需要的内容,产品或服务。


如果参考上面这个模型,那么小红书可能会有一个自己的助理服务,我跟他说我要找一下给宝宝的辅食食谱,然后这个消息经过加工,补全我的宝宝年龄,宝宝什么过敏,宝宝喜欢吃什么,不吃什么,之前的点赞收藏,之前关注过的up主等信息,然后在小红书的所有内容图谱中去匹配,然后给我一个每天宝宝餐饮计划,点击即可查看对应食谱内容对应的做法,这个排序同时参考了用户评论加权,这个方案我在当时感觉似乎是一种相对最优方案了,但存在一些问题,原有平台的内容,推荐,搜索等服务将会受到极大冲击,同时对内容创作者的正向激励也可能受到影响,也依然存在的返回结果加广告的问题。还有一个比较严重的问题,就是当一个任务需要多服务协同时,那么这套方案就不好使了,当时也在想如何解决,还没想清楚,ChatGPT Plugins来了,让作者认知出现了新的迭代。

作者额外做一下脑洞,未来可能出现一门新生意,关于信息检索或信息查询类的场景,整理数据包,举个例子,如果我需要去云南旅游,那么一个整理完备的云南基础旅游攻略数据集就是必须的,里面包含了景点,住宿,餐饮,路线等一系列信息包括网友评论,小红书,马蜂窝的各种热门攻略,用户可以直接将数据包扔到自己graph中,然后通过与copilot沟通,分分钟生成一套私人定制旅行攻略。也有可能很多人基于这个能力,为一些不会使用copilot的用户提供定制服务,比如为年长的父母生成一份精确的北京旅游攻略等,虽然现在也有旅行团,之前年长者担心自己走不明白的困扰,无奈抱团的窘境可能被解决,别忘了,ChatGPT已经能读图了,完全可以带着耳机,拿着手机,助理实时帮你解说该怎么走,该做什么地铁。

如果企业希望做一次战略咨询,可以向一些数据服务公司申请对应方向的资源库调用权限,然后公司的智能助理便可以根据这些数据帮助企业诊断问题,设计战略和落地计划,真的是充满无限想象空间。

2.2 ChatGPT Plugins方案

从ChatGPT Plugins发布来看,ChatGPT希望成为超级入口,用户有什么需求跟它说,它去根据语义理解调取用户已经安装的应用,然后去通过应用提供的API,完成特定的交互动作,所有操作页面都在ChatGPT中,你再也不需要一个个打开多个应用了,这个设计好处就是可以将大量应用服务能力接入到ChatGPT中,真的如发布会所说,让应用成为它的“眼睛和耳朵”(低情商的说法就是:服务和平台被管道化了,曾经把运营商逼成管道的互联网公司是否可能因为ai也变成了管道呢?)虽然这个方案解决了多个应用协同的场景,但同时引出一些问题。

上文中讨论了,需要沉淀下来大量的用户行为数据作为潜台词prompt输入,在这个设计中,其实ChatGPT只是完成用户录入信息理解和任务分发给目标应用,并返回应用找回信息作呈现,用户的行为数据依然沉淀在各个应用当中(原有应用的推荐模型还需要大改),这是成本最小的接入外部能力的方式。

但是,作者认为,这种体验大概率不会给用户创造最优体验,因为API返回的结果可能是广告投放的结果,也就是助理拿到一个广告信息,而且在这种交互中,视觉空间呈现有限,那么广告可能会卖的的更贵,这就衍生出下文的讨论,如果有平台不提供广告,就做深度图谱给出最优解的返回,他的返回质量是最好的,那么其他大厂会怎么办?即使没有这种服务,如果用户有多个这类应用PK,导致大平台为了可以在pk中胜出不敢给太多广告,那么可能会导致下文讨论的互联网大厂流量/广告变现逻辑被迫下线,似乎又到了自己革命还是等着外部不知道在哪里的竞争对手来革你的命的时候了。


2.3 作者推理中可能的方案

根据前文所述,如果希望可以与智能助理简短对话完成目标任务的最优体验,就需要助理服务可以存储和备份用户大量私人数据,这个时候,ChatGPT作为入口就感觉不是很稳妥,所以作者才认为手机厂商做这个事情非常顺畅(智能眼镜,手表,植入芯片覆盖有限,产品都不成熟),而且手机厂商确实也在做这方面的事情,只是之前的不够智能而已,苹果的siri,华为的小艺,小米的小爱等,同时,如果希望返回结果时用户理想或满足用户需求的,那么在与应用/服务/平台对接时,可能也需要做大量设计。参考微软的copilot和chatgpt plugins,作者认为未来的服务可能会类似下图交互。在请求个人隐私数据prompt时,如果做的安全一些,每一次请求都用区块链技术,记录请求与返回信息,增加双身份真正等方法确实个人数据安全,同时确保不会被恶意请求拿到用户私密数据。


当请求具体产品或服务时,终端智能助理+大语言模型要能根据返回商品或服务信息的评论等多种维度进行重新评估,也就是替我多平台比价,比质量等,如同人筛选产品一样,这样才不会让智能助理返回一堆广告投放的产品,其实在这个返回对比逻辑中,作者认为广告投放的效果可能并不会太好,核心还是要看产品/服务的质量,因为如果返回的只是竞价高的产品/服务,但是在跟其他app返回结果pk中失败,可能展示机会都没有,如果在结合到当前一些大公司已经在做自己的私域流量,那么私域流量服务的客户可能通过品牌自有平台提供最优服务体验,而不用在依托于平台和广告了。

未来很可能是终端智能助理与应用或服务的智能助理进行对话,进而生成独属于这个客户的需求返回结果,这就需要对接的应用服务平台进行系统改造,终端助理与各个平台之间的助理互动是Plugins模式,智能助理内部的数据校准返回是Copilot的模式,实现智能对智能,进而返回理想结果,确保用户输入少,返回精准,体验最优。

还是以旅游为例,当前的ChatGPT-4可以很好的识别我要做一个事情需要关注哪些点,如下图所示,大语言模型面对制作旅行计划时,考虑的非常全面,按照上面的分类,其实已经可以清楚需要调取哪些应用,并且知道需要与我互动拿到哪些补全信息,哪些信息是我的个人隐私数据库中有的,因为它可以识别我的相册,大概率都能给出我具体的穿搭建议,看了上面这些注意事项,作为一个去云南玩过的人,都没有考虑的这么周到。



上面的描述都有可能是过度状态,终态可能像流浪地球2中的脑机接口备份,或如同骇客帝国中的一样,插管进入元宇宙,这些暂时不得而知。


三、 移动互联网大变局前夜

过去20年的互联网和移动互联网商业模式上几乎是一样的,通过内容/服务/产品聚拢流量,然后流量/广告变现或对服务端收费利益分成,从搜索引擎到超级应用都是这个模式,但是这套玩法在人机互动的助理服务场景下可能就会有问题。虽然看到新闻说new bing要在chat中加广告,这套广告策略未必奏效,而且ChatGPT Plugins的方案感觉有些偷懒,如果API返回的结果都是广告信息,那么智能助理服务可能变得很鸡肋,但是作者也跟ChatGPT对话,它是有能力将同一个购物请求向多个平台发布,这个时候返回结果就有了pk机制,那么如果返回结果质量差,可能连显示都不能,所以智能助理请求的结果应该是平台选出的最优解。这个时候又有两种做法:

第一种,我只根据我能识别的关键词来进行检索,然后给助理返回结果,这个时候可能忽略大量信息,那么返回结果就未必是最优的,也就是当前Plugins这种模式,因为单靠一个API,原有平台在不做任何底层数据改造的情况下,搜索逻辑大概率不会很好的接受大量用户prompt;

第二种,为了提供更加好的服务,需要对平台内容喂给大语言模型,也就是要将自己的产品和用户的使用场景做关联,尽可能接收到目标请求可以接受到用户的诉求,如果极致一些,小红书需要对每一篇笔记的每一张图片和文案进行预训练,当一个用户需求(可能大量prompt)过来时,可以定制化的返回目标需求信息,也就是可以个根据用户诉求,将几篇笔记整合到一篇,整合笔记的时候兼顾评论的反馈。这又对平台如何激励创作者提出了挑战,但这种服务感觉是可以做成类似于costa或山姆超市会员制收费的逻辑,也就是想要享受这种专属内容服务可以通过付费获得

对于大厂来说,如果真的因为人机交互模式改变,被迫需要改变原有的流量/广告变现逻辑,对其收益影响会非常大,船大掉头难,阿里巴巴21年广告收入3000多亿,收入占比近40%,会员模式虽然可以解决一定的收入问题,但这个时候最怕不讲武德的免费模式公司进场,会不会因为人机交互的改变,AIGC的进场,让全部互联网公司来一场大地震呢?让我们拭目以待,有没有“屠龙少年”出现,如同字节跳动般杀出大厂的包围,甚至是颠覆当前的大厂格局。


总而言之,这一次的改变可能会如同家用计算机普及一般,从无限的深度和广度改变我们的工作和生活,而且这一轮大概率比计算机普及快得多,因为这一波变革是在云端发生的,不需要依赖硬件的普及,而且AI的迭代速度会远超过之前硬件的接待速度,所以也希望大家可以心态开放的看待这个事情,尽早学习,尽早使用,未来掌握与AI互动解决问题可能就如同今天大学毕业掌握Office一样,成为一种职场基础技能,不要在抱着“它不能xxxxxx”的心态,你会发现,你以为它不能的事情,它也许很快就能了,国际象棋,围棋,写代码,做设计,画插画...


下篇将介绍AI在企业协同办公领域的应用,所有的职场人(几乎所有白领)应该都会受到不同程度的影响,甚至收入越高可能影响越大,企业未来的管理方法都可能因为企业级智能助理的引入而发生巨大改变,建议大家可以点一下关注,以便获取后续内容。

作者学习资料链接会放在评论区置顶,也希望大家有好的资料可以分享给我,进一步完善这套知识库。


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存